본 연구의 목적은 한국소비자원의 2019 소비자시장평가 대상인 31개 품목 서비스시장에 대한 소비자 감성을 분석하고, 이에 기초하여 국내 서비스시장의 소비자지향성을 높일 수 있는 시사점과 한국소비자원의 소비자시장평가 결과를 보완하는 자료로써의 활용 가능성을 찾는데 있다. 이를 위해 SNS 빅데이터 분석을 실시하였으며 분석결과에 기초한 주요 결과는 다음과 같다. 첫째, 실손의료보험은 보상절차의 어려움으로 인한 소비자문제, 기프티콘 · 모바일상품권은 짧은 사용기간으로 인한 소비자문제, 상조서비스 시장은 사업자의 폐업 등으로 인한 소비자문제를 그대로 반영하고 있어, 이들 시장은 해당 문제점을 해결하기 위해서는 제도개선이 시급함을 시사한다. 나아가, 긍정감성어로 ‘정직한’과 ‘보상하다’가, 부정감성어로 ‘책임지지 않다, 의심되다, 우려’ 등이 많은 품목에서 공통적으로 나타나고 있으며, 이는 서비스 시장 전체적으로 소비자와의 신뢰를 기반으로 사업자의 책임과 보상이 철저히 이루어지는 것이 소비자지향성을 높이는 개선방안임을 시사한다. 둘째, 서비스시장의 품목별 본질적 특성과 연결되어 있는 감성어로써 외식(맛있다), 주택수리 · 인테리어(예쁘다, 감각적)와 같은 긍정감성어, 치과치료 · 동물병원(과잉진료), 택시(불편, 불쾌, 더러운), 포장이사(분실, 파손), 택배(오배송, 분실)와 같은 부정감성어는 국내 서비스시장의 소비자지향성 향상을 위해 사업자로 하여금 서비스 품목별로 어느 부분을 강화하고 어느 부분을 제거해야 할지를 시사한다. 셋째, 긍정 · 부정 감성어 빈도율 분석에 기초한 품목별 시장의 전반적 감성성향은 2019 소비자시장평가 결과 기대만족도 요인에서 경고수준을 보였던 택시, 자동차수리, 상조서비스의 경우, 전반적인 부정감성 성향이 강하게 나타난 반면, 포장이사서비스는 그렇지 않았다. 이상의 결과는 SNS 빅데이터 감성분석 결과가 시장의 소비자지향성을 높이기 위한 개선점 도출 혹은 한국소비자원의 소비자시장평가 보완자료로 활용하는데 충분한 가치가 있음을 시사하며, 실제 활용 시 품목별 시장의 감성어 의미 분석결과와 전반적 감성성향 분석결과를 함께 활용하는 것이 바람직함을 시사한다.
The purpose of this study was to find consumers’ sentiments toward 31 service items, which were surveyed in 2019 consumer market evaluation by Korea Consumer Agency, and to find some implications for enhancing consumer orientation of service market and to find some possibility to use as a supplementary finding of consumer market evaluation results by Korea Consumer Agency(KCA), based on consumers’ sentiment analysis results. Consumers’ sentiment analysis were utilized using SNS big data. The main results and implications were as follows. First, consumer problems in private health care insurance service, gifticon · mobile gift service, funeral market service were found to be difficulty of compensation process, short expiring period, and frequent closing of business respectively. This result imply that some government policy improvement should be needed in the markets of private health care insurance, gifticon · mobile gift, and funeral service. Furthermore, those words, such as ‘honest’, ‘compensate’ as positive sentiment words, and ‘not taking responsibility’, ‘doubt’, ‘anxiety’as negative sentiment words, were found to be the most common sentiment words. This result implies that some ideas for taking strong responsibility and compensation of business based on reinforcing consumers’ trust toward service market, are needed in service market generally. Second, some sentiment words, related to essential element of service items, were found to be eating out service (delicious), house repairing · interior service (pretty, being sensual) as positive sentiment words, and dental treatment · animal hospital service (over-treatment), taxi service (inconvenient, unpleasant, dirty), moving with packing service (losing, breaking), delivery service (wrong delivery, losing parcel) as negative sentiment words. This result implies that it is necessary for business to enforce consumers’ positive sentiment and to reduce consumers’ negative sentiment based on sentiment words for enhancing consumer orientation of service market. Third, consumers’ overall sentiment tendency was analyzed based on ratios of the number of positive or negative sentiment words out of total sentiment words. And consumers’ overall sentiment tendency were analyzed toward four items of service markets, which were classified as warning market in expected satisfaction part in 2019 consumer market evaluation survey by KCA. The results showed that for taxi, car repairing, and funeral service market, negative sentiment tendency was overwhelming, whereas for moving with packing service, rather positive sentiment tendency was found. Lastly, above results imply that the results from consumers’ sentiment analysis with SNS big data show enough possibility for drawing some ideas for enhancing consumer orientation in service market. And when researchers apply sentiment analysis results with SNS big data to field for enhancing consumer orientation in service market, it might be suggested to use the meanings of sentiment words and overall sentiment tendency together.