메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최종현 (고려대학교) 강필성 (고려대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第45卷 第4號
발행연도
2020.11
수록면
1 - 10 (10page)
DOI
10.7737/JKORMS.2020.45.4.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Media outlets regularly publish articles on the same issue using various tones that are distinct to each media company. To discover how one company’s tone is different from those of other outlets is presented in news articles, we designed a text analytics framework based on the weight scores of words used in politics and editorial sections from four major domestic newspaper companies. In our experiment, we selected five controversial political issues and collected related newspaper articles reported within a specified period. Then, we preprocessed these articles, such as tokenizing and part-of-speech tagging, an open-source Korean morpheme analyzer. The weights of the words are computed on the basis of the frequency-based CRED TF-IDF and scaled F-score. In addition, we constructed a neural network classifier to categorize the publisher of each article correctly on the basis of an attention mechanism to find highly contributive words for publisher discrimination. Lastly, we analyzed the differences in tones by visualizing keywords to provide an intuitive understanding.

목차

Abstract
1. 서론
2. 관련 연구
3. 실험 방법론
4. 실험 결과
5. 결론 및 제언
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-325-001582489