메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제32권 제2호
발행연도
2009.1
수록면
132 - 139 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring technology, many industries operate the production lines that are developed into automation system. In these production lines, the product structures are very complexity and variety. So, there are many multi-variate processes that need to be monitored with many quality characteristics and associated process variables at the same time. These situations have made it possible to obtain super-large manufacturing process data sets. However, there are many difficulties with finding the cause of process variation or useful information in the high capacity database. In order to solve this problem, neural networks technique is a favorite technique that predicts the yield of process for process control. This paper uses a neural networks technique for improvement and maintenance of yield in manufacturing process. The purpose of this paper is to model the prediction of a sub process that has much effect to improve yields in total manufacturing process and the prediction of adjustment values of this sub process. These informations feedback into the process and the process is adjusted. Also, we show that the proposed model is useful to the manufacturing process through the case study.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0