메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
손숙영 (UNIST(울산과학기술대학교)) Bernardo Nugroho Yahya (UNIST(울산과학기술대학교)) 송민석 (UNIST(울산과학기술대학교)) 최상수 (삼성전기) 현정호 (삼성전기) 이범기 (삼성전기) 장용 (삼성전기) 성낙윤 (삼성전기) 신연식 (삼성전기)
저널정보
(사)한국CDE학회 한국CDE학회 학술발표회 논문집 한국CADCAM학회 2014 동계학술대회 논문집
발행연도
2014.2
수록면
739 - 744 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As ‘big data’ becomes a key issue of the IT industry, there has been a lot of research work conducted for the unstructured data analysis in the service or IT industry. However, one of the main industries of Korea is manufacturing, and it usually produces structured rather than unstructured data. Therefore, developing a systematic analysis methodology for the structured data analysis is needed, especially for a manufacturing data analysis. Accurate manufacturing data analysis provides useful information for a competitive production capacity, which will influence on the productivity and competitiveness of a company. A Manufacturing Execution System (MES) is a computerized system used in the manufacturing industry. It extracts manufacturing related information automatically, which is useful for manufacturing manager to make better decisions. Manufacturing data analysis is able to be performed by using MES. Process Mining aims at extracting useful knowledge by analyzing event logs which are gathered from information systems (e.g. ERP, MES, and CRM). Manufacturing data analysis with process mining techniques can derive not only manufacturing process models, but also several performance measures related to processes, resources, and equipment. In this paper, we propose a framework for analyzing manufacturing processes using process mining techniques with the aim of deriving useful information from manufacturing transaction logs. Furthermore, we conducted a case study of the Samsung Electro-Mechanic (SEM) manufacturing process to prove the proposed framework.

목차

ABSTRACT
1. Introduction
2. Process Mining
3. Process Mining Framework
4. Case Study
3. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-002695690