메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국수학교육학회 수학교육 수학교육 제44권 제4호
발행연도
2005.1
수록면
555 - 572 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
there have been many papers reporting that the axiomatic approach in Abstract Algebra is a big obstacle to overcome for the students who are not trained to think in an abstract way. Therefore an instructor must seek for ways to help students grasp mathematical concepts in Abstract Algebra and select the ones suitable for students. Mathematics faculty and students generally consider Abstract Algebra in general and quotient groups in particular to be one of the most troublesome undergraduate subjects. For, an individual's knowledge of the concept of group should include an understanding of various mathematical properties and constructions including groups consisting of undefined elements and a binary operation satisfying the axioms. Even if one begins with a very concrete group, the transition from the group to one of its quotient changes the nature of the elements and forces a student to deal with elements that are undefined. In fact, we also have found through running abstract algebra courses for several years that students have considerable difficulty in understanding the concept of quotient groups. Based on the above observation, we explore and analyze the nature of students' knowledge about that is the set of congruence classes modulo . Applying the genetic decomposition method, we propose a model to lead students to achieve the correct concept of .

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0