메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태호 (경성대학교) 김학선 (경성대학교)
저널정보
한국조리학회 Culinary Science & Hospitality Research Culinary Science & Hospitality Research Vol.24 No.10(Wn.101)
발행연도
2018.12
수록면
107 - 115 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The foodservice industry is sensitive to the trend, the intensity of market competition is increasing, and the trend of the trend is shortening. It is important for food companies to strengthen their competitiveness and to understand the causes of sales growth in the foodservice industry. The sales of the foodservice industry are caused by the efficient use of resources such as food taste, location, marketing, and resources used for production. In this study, descriptive statistical analysis and correlation analysis were conducted to analyze the efficiency of foodservice companies. For achieving the research purposes, in the BCC model, technology efficiency and scale efficiency were analyzed by using the DEA model for the top 10 food service companies in Korea. As a result of CCR analysis, DMU of TE=1 in model 1 was 62.4% more than that of inefficient company. For the BCC analysis assuming the scale of profit, Decision Making Unit(DMU) of PTE=1 was 77.9% and SE=80.2%. In Model 2, TE=40.8%, PTE=93.3% and SE=43.2%. The low efficiency of the operational aspects identified through the results of the study seems to be due to the increase of singleperson households and delivery culture, and the spread of HMR and Meal-kit products. In conclusion, to respond to various demand changes through analysis of big data of consumption polarization and value consumption trend according to industry, and to develop existing business management model and to develop new type of fusion and hybrid business model.

목차

ABSTRACT
1. 서론
2. 이론적 배경
3. 연구내용 및 방법
4. 실증분석
5. 결론 및 제언
REFERENCES

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-594-000334570