메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
주우진 (서울대학교) 임미자 (고려사이버대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第43卷 第4號
발행연도
2018.11
수록면
45 - 65 (21page)
DOI
10.7737/JKORMS.2018.43.4.045

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presents a scenario-based, long-term forecasting model of electric vehicle (EV) sales. A simulated choice experiment using the multinomial hybrid choice model was estimated, where consumer utility was dependent on vehicle type, total cost of ownership (TCO), and personal variables. Results show that lower TCO, lower range-anxiety, and greater environmental concern lead to greater choice probability for EVs. Using the parameters of the TCO variable and the intercept, an initial probability of choosing an EV over an internal combustion engine car was derived. To this initial estimate, macro factors were incorporated, including charging infrastructure, oil prices, battery technology, and government incentives. Charging infrastructure was modeled as the convenience factor; battery technology and government incentives were modeled as affecting vehicle costs; and oil prices as affecting the operating cost. Based on long-term changes in the macro factors, three scenarios were selected: the reference scenario, the low-battery cost scenario, and the high oil price scenario. The forecasting model shows that long-term changes in oil prices are much more important than long-term changes in battery cost in terms of determining the adoption of electric vehicles. This is because fuel cost, over time, has a bigger impact on TCO, whereas the importance of battery prices on TCO decreases. Results also indicate that convenience is the main inhibitor of EV adoption, implying that the government’s policy should transition from providing cash-back incentives to building better charging infrastructure.

목차

Abstract
1. 서론
2. 이론적 배경
3. 연구 방법
4. 연구 결과
5. 결론
참고문헌

참고문헌 (54)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-325-000172197