메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
XiaoSheng Liu (Harbin Institute of Technology) Bo Liu (Harbin Institute of Technology) DianGuo Xu (Harbin Institute of Technology)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.11 No.2
발행연도
2016.3
수록면
309 - 319 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a new recognition and classification method for power quality (PQ) disturbances on the basis of pattern linguistic values. This method solves the difficulty of recognizing disturbances rapidly and accurately by using fuzzy logic. This method uses classification disturbance patterns to define the linguistic values of fuzzy input variables and used the input variables of corresponding disturbance pattern to set membership functions. This method also sets the fuzzy rules by analyzing the distribution regularities of the input variable values. One characteristic of this method is that the linguistic values of fuzzy input variables and the setting of membership functions are not only related to the input variables but also to the character of classification disturbance and the classification results. Furthermore, the number of fuzzy rules is equal to the number of disturbance patterns. By using this method for disturbance classification, the membership function and design of fuzzy rules are directly related to the objective of classification, thus effectively reducing the complexity of the design process and yielding accurate classification results. The classification results of the simulation and measured data verify the feasibility and effectiveness of this method.

목차

Abstract
1. Introduction
2. Classification Approach based on Pattern Linguistic Values
3. Feature Extraction
4. Fuzzy Inference System
5. Results and Discussion
6. Conclusion
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-002378149