메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
P. Murugeswari (Karpagam College of Engineering) S. Vijayalakshmi (NMS S. Vellaichamy Nadar College)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.20 No.4
발행연도
2020.12
수록면
336 - 345 (10page)
DOI
10.5391/IJFIS.2020.20.4.336

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the last two decades, neural networks and fuzzy logic have been successfully implemented in intelligent systems. The fuzzy neural network (FNN) system framework infers the union of fuzzy logic and neural network system framework thoughts, which consolidates their advantages. The FNN system is applied in several scientific and engineering areas. Wherever there is uncertainty associated with the data, fuzzy logic places a vital rule. The fuzzy set can effectively represent and handle uncertain information. The main objective of the FNN system is to achieve a high level of accuracy by including the fuzzy logic in either the neural network structures, activation functions, or learning algorithms. In computer vision and intelligent systems, convolutional neural networks (CNNs) have more popular architectures, and their performance is excellent in many applications. In this paper, fuzzy-based CNN image classification methods are analyzed, and an interval type-2 fuzzy-based CNN is proposed. The experimental results indicated that the performance of the proposed method was good.

목차

Abstract
1. Introduction
2. Literature Survey
3. Comparison of FCNN Architectures
4. Interval Type-2 Fuzzy CNN
5. Experimental Result
6. Conclusions
References

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-003-000060732