메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이준영 (서울대학교) 이경수 (서울대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제21권 제3호
발행연도
2015.3
수록면
199 - 209 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
This paper presents a model predictive control (MPC) approach to control the steering angle in an autonomous vehicle. In designing a highly automated driving control algorithm, one of the research issues is to cope with probable risky situations for enhancement of safety. While human drivers maneuver the vehicle, they determine the appropriate steering angle and acceleration based on the predictable trajectories of surrounding vehicles. Likewise, it is required that the automated driving control algorithm should determine the desired steering angle and acceleration with the consideration of not only the current states of surrounding vehicles but also their predictable behaviors. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, we define a safe driving envelope with the consideration of probable risky behaviors among the predicted probable behaviors of surrounding vehicles over a finite prediction horizon. For the control of the vehicle while satisfying the safe driving envelope and system constraints over a finite prediction horizon, a MPC approach is used in this research. At each time step, MPC based controller computes the desired steering angle to keep the subject vehicle in the safe driving envelope over a finite prediction horizon. Simulation and experimental tests show the effectiveness of the proposed algorithm.

목차

Abstract
I. INTRODUCTION
II. OVERALL ARCHITECTURE
III. VEHICLE DYNAMICS MODEL
IV. SAFE DRIVING ENVELOPE DECISION
V. MPC based Controller Design
VI. SIMULATION AND EXPERIMENT RESULTS
VII. CONCLUSION
REFERENCES

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001155621