메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Wonsang Hwang (Seoul National University) Jaehong Park (Seoul National University) Hyun-il Kwon (Seoul National University) Muhammad Latif Anjum (Seoul National University) Jong-hyeon Kim (Seoul National University) Changhun Lee (Seoul National University) Kwang-soo Kim (Hanbat National University) Dong-il “Dan” Cho (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
2,041 - 2,046 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The vision tracking system in this paper estimates the robot position relative to a target and rotates the camera towards the target. To estimate the robot position of mobile robot, the system combines information from an accelerometer, a gyroscope, two encoders, and a vision sensor. The encoders can provide fairly accurate robot position information, but the encoder data are not reliable when robot wheels slip. Accelerometer data can provide the robot position information even when the wheels are slipping, but a long term position estimation is difficult, because of integration of errors arising from bias and noise. To overcome the drawbacks of each method mentioned in the above, the proposed system uses data fusion with two Kalman filters and a slip detector. One Kalman filter is for the slip case, and the other is for the no-slip case. Each Kalman filter uses a different sensor combination for estimating the robot motion. The slip detector compares the data from the accelerometer with the data from the encoders, and decides if a slip condition has occurred. Accordingly, based on the decision of the slip detector, the system chooses one of the outputs of the two Kalman filters, which is subsequently used for calculating the camera angle of the vision tracking system. The vision tracking system is implemented on a two-wheeled robot. To evaluate the tracking and recognition performance of the implemented system, experiments are performed for various robot motion scenarios in various environments.

목차

Abstract
1. INTRODUCTION
2. SYSTEM ORGANIZATION
3. SENSOR DATA FUSION FOR VISION TRACKING
4. EXPERIMENTAL RESULTS
5. CONCLUSION
ACKNOWLEDGEMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000940840