메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ehsan Samadani (K. N. Toosi University of Technology) Mohammadhassan Behroozi (Iran University of Science and Technology) Amirhossein Shamekhi (K. N. Toosi University of Technology) Reza Chini (K. N. Toosi University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
1,680 - 1,685 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In diesel engines, applying design techniques such as computer simulations has become a necessity in view of the fact that these methods can result in small amounts of NOx and SOOT and a reasonable fuel economy. To achieve such a target, multi-objective optimization methodology is a good choice In this paper, this technique is implemented on a closed cycle two-zone combustion model of a DI diesel engine. The combustion model is developed by Matlab programming and validated by a single cylinder Ricardo data obtained from the engine. The main outputs of this model are NOx, SOOT and engine performance. The optimization goal is to minimize NOx and SOOT at the same time while maximizing engine performance. Injection timing, injection duration and AFR (Air-fuel ratio) are selected from engine inputs as design variables. A neural network model of the engine is developed based on model data as an alternative for the complicated and time-consuming combustion model in a wide range of engine operation. Design variables are optimized using GA (Genetic Algorithm). Here, three common algorithms for multi-objective optimization, MOGA, NSGA-II, and SPEA2+ are applied and the results are compared.

목차

Abstract
1. INTRODUCTION
2. COMBUSTION MODEL
3. NEURAL NETWORKS
4. MULTI-OBJECTIVE OPTIMIZATION
6. GENETIC ALGORITHM IMPLEMENTATION
7. CONCLUSION
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000985650