메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Azad Ghaffari (Monenco Iran) Mohammad Javad Yazdanpanah (University of Tehran)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
1,610 - 1,615 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we have concentrated on real systems consisting of structural uncertainties and affected by external disturbances. In this regard, Sliding Mode Control (S.M.C.) is utilized. To decrease energy consumption, arising from chattering phenomenon, a smooth switch has been used in design procedure. Consequently, sliding equation will play a dominant controlling role in its neighborhood. The converging property of sliding motion towards the origin is a challenging issue. In this article we present a new method to prove the stability of the sliding phase which means, state trajectories on the sliding surface move toward the origin. At the beginning, the equivalent control method is reestablished such that makes this purpose accessible. The modification bounds the sliding equation to a converging set. Then to improve main factors of closed loop system, such as, transient behavior, energy consumption and the domain of attraction, the optimal control theory is used to compute the optimized sliding surface in the stabilizing set. Generally, desired surface has nonlinear terms. Finally, we propose an elaborate algorithm for computing optimized nonlinear surfaces. The designed controller is applied to a flexible?ink setup. Simulation results show the efficiency of the proposed approach.

목차

Abstract
1. INTRODUCTION
2. SLIDING MODE CONTROLLER DESIGN
3. MODIFICATION OF S.M.C. TO OBTAIN A CONVERGING SLIDING MOTION
4. OPTIMAL APPROACH TO COMPUTE THE NONLINEAR STABLE SURFACE
5. CASE STUDY: A FLEXIBLE?LINK ROBOT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000985529