메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안일준 (한국과학기술원) 박인규 (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 시스템 및 이론 정보과학회논문지 : 시스템 및 이론 제37권 제2호
발행연도
2010.4
수록면
66 - 75 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 GPU(graphics processing unit)를 이용하여 오목의 인공지능 알고리즘 연산을 고속으로 수행하기 위한 효율적인 알고리즘 설계와 구현 방법을 제안한다. 본 논문에서 제안하는 게임 인공지능은 최소-최대 게임 트리(min-max game tree)와 유전 알고리즘(genetic algorithm)의 협업적 구조로 설계된다. 게임 트리와 유전 알고리즘의 평가함수(evaluation function) 부분은 많은 계산 량을 소모하지만 해 공간(solution space)의 수많은 후보 벡터에 대해 독립적으로 수행되기 때문에 본 논문에서는 이를 GPU 상에서의 대량 병렬처리를 통해 수행한다. NVIDIA CUDA(compute unified device architecture) 환경에서의 실제 구현을 통해 CPU에서의 처리에 비해 게임 트리는 400배 이상의 수행 속도의 향상을, 유전 알고리즘은 300배 이상의 수행 속도의 향상을 각각 보였다. 본 논문에서는 스레드(thread)의 넘침(overflow)을 피하고 보다 효과적인 해 공간 탐색을 위해, 게임 트리를 이용하여 근방의 몇 단계까지 전역 탐색(full search)을 수행한 후 이후 단계는 유전 알고리즘을 이용하여 선별 탐색을 수행하는 협업적인공지능을 제안한다. 다양한 실험 결과를 통해 제안하는 알고리즘은 게임의 인공지능을 향상시키고 게임의 규칙으로부터 주어진 시간 내에 문제를 해결할 수 있음을 보인다.

목차

요약
Abstract
1. 서론
2. 기존의 연구
3. 오목 인공지능 설계
4. 오목 인공지능의 GPU 기반 구현
5. 실험 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-003310540