메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
컴퓨터 비전이나 패턴 인식 분야에서 이용되고 있는 많은 알고리즘들이 최근 빠른 수행시간을 위해 GPU에서 구현되고 있지만, GPU를 이용하여 알고리즘을 구현할 경우 크게 두 가지 문제점을 고려해야 한다. 첫째, 컴퓨터 그래픽스 분야의 지식이 필요한 쉐이딩(shading) 언어를 알아야 한다. 둘째, GPU를 효율적으로 활용하기 위해 CPU와 GPU간의 데이터 교환을 최소화해야 한다. 이를 위해 CPU는 GPU에서 처리할 수 있는 최대 용량의 데이터를 생성하여 GPU에 전송해야 하기 때문에 CPU에서 많은 처리시간을 소모하며, 이로 인해 CPU와 GPU 사이에 많은 오버헤드가 발생한다. 본 논문에서는 그래픽 하드웨어와 멀티코어(multi-core) CPU를 이용한 빠르고 효율적인 신경망 구현 방법을 제안한다. 기존 GPU의 첫 번째 문제점을 해결하기 위해 제안된 방법은 복잡한 쉐이딩 언어 대신 그래픽스적인 기본지식 없이도 GPU를 이용하여 응용프로그램 개발이 가능한 CUDA를 이용하였다. 두 번째 문제점을 해결하기 위해 멀티코어 CPU에서 공유 메모리 환경의 병렬화를 수행할 수 있는 OpenMP를 이용하였으며, 이는 CPU의 처리시간을 줄여 CPU와 GPU 환경에서 오버헤드를 최소화할 수 있다. 실험에서 제안된 CUDA와 OpenMP기반의 구현 방법을 신경망을 이용한 문자영역 검출 알고리즘에 적용하였으며, CPU에서의 수행시간과 비교하여 약 15배, GPU만을 이용한 수행시간과 비교하여 약 4배정도 빠른 수행시간을 보였다.

목차

요약
Abstract
1. 서론
2. CUDA와 OpenMP
3. 신경망 구현
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-019508026