메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (8)

초록· 키워드

오류제보하기
군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적용할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 본 논문에서는 구조적 위험 최소화를 기반으로 한 SVM을 여러 개 이용한 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화방법을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 Cascade SVM을 기반으로 한 강화학습의 특성을 이용한 선택 교배방법을 채택하였다.

목차

요약
1. 서론
2. 군집 로봇의 통신 모델
3. 행동학습 및 진화시스템의 구조
4. 분산유전알고리즘에 의한 행동 진화
5. 시뮬레이션 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0