메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2005년 추계학술대회 및 정기총회
발행연도
2005.10
수록면
51 - 54 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. In this paper we propose a new algorithm for K-medoids clustering which runs like the K-means algorithm. The new algorithm calculates distance matrix once and uses it for finding new medoids at every iterative step. We evaluate the proposed method using real and synthetic data and compare with the results of other algorithms. The proposed algorithm takes reduced time in computation and better performance than others.

목차

Abstract
1. Introduction
2. Proposed Algorithm
3. Examples
4. Simulation
5. Conclusion and Future Works
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-017270501