메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 한국경영과학회지 한국경영과학회지 제29권 제1호
발행연도
2004.3
수록면
43 - 56 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of clustering is to partition a set of objects into several clusters based on some appropriate similarity measure. In most cases, clustering is considered without any prior information on the number of clusters or the structure of the given data, which makes clustering is one example of very complicated combinatorial optimization problems. In this paper we propose a general-purpose clustering method that can determine the proper number of clusters as well as efficiently carry out clustering analysis for various types of data. The method is composed of two stages. In the first stage, two different hierarchical clustering methods are used to get a reasonably good clustering result, which is improved in the second stage by ASA(accelerated simulated annealing) algorithm equipped with specially designed perturbation schemes. Extensive experimental results are given to demonstrate the apparent usefulness of our ASA clustering method.

목차

Abstract

1. 서론

2. 군집화 문제와 군집화의 목적 함수

3. 군집화 과정

4. 모의 데이터에 대한 실험

5. 실제 데이터에 대한 적용 예

6. 결론 및 토의

참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013787485