메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이경호 (한국생명공학연구원) Na Yeong Lee (Korea Research Institute of Bioscience and Biotechnology) Mi-Lang Kyun (Korea Institute of Toxicology) Ji Eun Yu (Mokpo National University) Sun-Ok Kim (Chungbuk National University College of Medicine and Medical Research Center) Key-Hwan Lim (Chungbuk National University)
저널정보
한국분자세포생물학회 Molecules and Cells Molecules and Cells Vol.47 No.1
발행연도
2024.1
수록면
1 - 14 (14page)
DOI
10.1016/j.mocell.2024.100142

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Primary cilium is an important hub for cell signaling and dysregulation of primary cilia assembly and disassembly is associated with the development of cancer and chemotherapeutic drug resistance, as well as the genetic disorders collectively known as ciliopathy. β-catenin plays a major role in canonical Wnt signaling; however, its association with primary cilia has only recently been highlighted in reports of β-catenin-mediated primary ciliogenesis. In this study, we found that β-catenin p-S47 was localized to the Golgi apparatus and the nucleus, and the amount of β-catenin p-S47 at these locations was significantly higher during primary ciliogenesis compared with asynchronous cell growth conditions. In addition, the novel β-catenin-binding motor proteins KIF11 and KIFC3 were shown to have a lower binding affinity in β-catenin S47A than in β-catenin wild-type. Knockdown of KIF11 or KIFC3 resulted in primary cilia deficiency and increased β-catenin p-S47 levels in the Golgi apparatus and were accompanied by a decrease in β-catenin p-S47 at the centrosome. The accumulation of β-catenin p-S47 in the nucleus was increased during primary ciliogenesis along with β-catenin-dependent transcriptional activity. The collective findings indicate the existence of a novel mechanism of primary ciliogenesis involving KIF11-/KIFC3-associated β-catenin p-S47 in the Golgi apparatus and β-catenin p-S47 transcriptional activity in the nucleus. This study revealed a new mechanism for the study of ciliopathies, cancer, and chemotherapeutic drug resistance caused by primary ciliogenesis dysregulation and provides new targets for drug development to treat these diseases.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0