메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gang Wu (Southeast University) Yitian Han (Southeast University) Dongming Feng (Southeast University) Ye Xia (Tongji University) Rong Lin (Southeast University) Chan Ghee Koh (National University of Singapore)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal 제34권 제3호
발행연도
2024.9
수록면
157 - 169 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Accidents involving inland waterway vessels have raised concerns regarding monitoring their navigation tracks. The economical and convenient deployment of video surveillance equipment and computer vision techniques offer an effective solution for tracking vessel trajectories in narrow inland waterways. However, field applications of video surveillance systems face challenges of small object detection and the limited field of view of cameras. This paper investigates the feasibility of using multiple monocular cameras to monitor long-distance inland vessel trajectories. The one-stage CNN model, YOLOv5, is enhanced for small object detection by incorporating generalized intersection over union loss and a multi-scale fusion attention mechanism. The Bytetrack algorithm is employed to track each detected vessel, ensuring clear distinction in multiple-vessel scenarios. An inverse projection formula is derived and applied to the tracking results from monocular camera videos to estimate vessel world coordinates under potential water level changes in long-term monitoring. Experimental results demonstrate the effectiveness of the improved detection and tracking methods, with consistent trajectory matching for the same vessel across multiple cameras. Utilizing the Savitzky-Golay filter mitigates jitter in the entire final trajectory after timing-alignment merging, leading to a better fit of the dispersed trajectory points.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0