메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Eunyoung Oh (Chung-Ang University) Jihye Choi (Chung-Ang University) Jiwon Jung (Chung-Ang University) Kyohoon Jin (Chung-Ang University) Kiung Bak (Chung-Ang University) Youngbin Kim (Chung-Ang University) Changjae Lee (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소MINT Moving Image & Technology (MINT) MINT: Moving Image & Technology, Vol.4, No.2
발행연도
2024.8
수록면
14 - 18 (5page)
DOI
10.15323/mint.2024.8.4.2.14

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study outlines the development of a Korean-specialized text-to-video generative artificial intelligence model. In the Korean film industry, the traditional pipeline of pre-production, production, and post- production varies in efficiency in terms of capital investment and labor input, and is thus greatly influenced by capital. Within this structure, the gap between commercial films with large capital investments and lower-budget productions – such as independent films and art films – has widened, ultimately compromising cinematic diversity. In addition, owing to the limited availability of video generation technology that accepts Korean input, video content creators in Korea utilize existing video generation technology inefficiently. To address these issues, we developed a Korean-specialized text-to-video generative AI model, and proposed efficient utilization methods for the Korean film industry to break free from its existing capital-centric structure. We produced short films with runtimes within three minutes, confirming the ability to create video content for pre-visualization in the pre-production stage, as well as additional insert cuts required in later stages. Nonetheless, further research is required to enhance this technology and achieve more polished scenes by maintaining consistent object shapes and reflecting various shot sizes and camera movements.

목차

Abstract
1. Introduction
2. Related Works
3. Experimental Results and Discussion
4. Specific Requirements
5 Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091047843