메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seok Noh (Jeju National University) Jaejung Kang (Jeju National University)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제24권 제4호
발행연도
2024.8
수록면
203 - 218 (16page)
DOI
10.37272/JIECR.2024.08.24.4.203

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigated the factors influencing intention and behavior to contribute information from the perspectives of expectancy theory, and the unified theory of acceptance and use of technology (UTAUT). Performance expectations and relationship expectations were selected as factors that directly affect information contribution activities. and included the mediating effect of information contribution intention and work engagement in those relation structure.
The data were collected from small and medium-sized enterprises (SMEs) in China. A total of 531 employee samples were involved, and structural equation modeling (SEM) was used to test their predictive powers on the behaviors of information contribution. The findings confirmed our hypothesis that performance expectancy affect information contribution intention, work engagement and information contribution behavior. also, relationship expectancy affects individuals’ work engagement, information contribution intention and information contribution behavior.
Moreover, performance expectancy and relationship expectancy indirectly influence information contribution behavior via information contribution intention and work engagement. The study provides many insights into evolving constructs (i.e., information contribution intention and work engagement) and examines how organizations can create the performance and relationship of employees through work engagement.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Theoretical Background
Ⅳ. Methodology/ Approach
Ⅴ. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0