메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤준우 (분당제생병원 응급의학과) 박민우 (서울시립대학교 자연과학연구소) 김영식 (분당제생병원 응급의학과) 이규현 (분당제생병원 응급의학과) 정루비 (분당제생병원 응급의학과) 유우성 (분당제생병원 응급의학과) 곽경훈 (분당제생병원 응급의학과) 최승주 (분당제생병원 응급의학과)
저널정보
대한응급의학회 대한응급의학회지 대한응급의학회지 제35권 제1호
발행연도
2024.2
수록면
67 - 76 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: The purpose of this study was to develop a machine learning-based model (eXtreme Gradient boost [XGBoost]) that can accurately predict the severity of acute cholangitis in patients. The model was designed to simplify the classification process compared to conventional methods. Methods: We retrospectively collected data from patients with cholangitis who visited the emergency department of a secondary medical institution in Seongnam, Korea from January 1, 2015 to December 31, 2019. The patients were divided into three groups (Grade I, II, III) based on severity according to the Tokyo Guidelines 2018/2013 (TG18/13) severity assessment criteria for cholangitis. We used algorithms to select variables of high relevance associated with the grade of severity. For the XGBoost models, data were divided into a train set and a validation set by the random split method. The train set was trained in XGBoost models using only the top seven variables. The area under the receiver operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC) were obtained from the validation set. Results: 796 patients were enrolled. The top 7 variables associated with the grade of severity were albumin, white blood cells, blood urea nitrogen, troponin T, platelets, creatinine, prothrombin time, and international normalized ratio. The AUROC values were 0.881 (Grade I), 0.836 (Grade II), and 0.932 (Grade III). The AUPRC values were 0.457 (Grade I), 0.820 (Grade II), and 0.880 (Grade III). Conclusion: We believe that the developed XGBoost model is a useful tool for predicting the severity of acute cholangitis with high accuracy and fewer variables than the conventional severity classification method.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0