메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이규태 (신한대학교) 홍경옥 (신한대학교)
저널정보
한국비교정부학회 한국비교정부학보 한국비교정부학보 제28권 제1호
발행연도
2024.3
수록면
21 - 40 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
(Purpose) Based on a total of 21 hotel economic trend data collected through the Korea Statistical Information Service (KOSIS) and the Korea Hotel Industry Association, this study uses a machine learning model to determine the prediction model estimation and the importance of variables to propose a differentiation strategy for hotels to preemptively respond to rapidly changing economic fluctuations. (Design/methodology/approach) Based on previous research, a machine learning model was used to grasp the prediction accuracy and importance of variables in the hotel economic trend model. Data collection was based on a total of 12 years of data from 2011 to 2022, and the data cycle was set on a monthly and quarterly basis. On the other hand, the orange data mining 3.32 program, a machine learning program, was used to grasp the prediction accuracy of hotel business trends. (Findings) The prediction accuracy was the highest in the linear form at 93.3%, followed by the neural network at 89.7%, linear at 83.3%, and support vector machine at 75.6%. In other words, it is judged that it is necessary to actively use adaboost and neural network models to predict hotel business trends and future time series models. (Research implications or Originality) In order to predict hotel economic trends, in addition to existing macroeconomic indicators, room profit rate indicators, which directly affect hotel revenue, should be considered. Implications of this study provide academic and managerial suggestions and limitations of the study and directions for future research are suggested.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0