메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gyeongho Cho (Pusan National University) Changsun Ahn (Pusan National University) Juhui Gim (Changwon National University)
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제32권 제8호
발행연도
2024.8
수록면
657 - 666 (10page)
DOI
10.7467/KSAE.2024.32.8.657

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This research sought to address the crucial challenge of enhancing nighttime curb segmentation in autonomous driving systems. The study delved into the limitations of using cameras, especially in low-light conditions, and its effects on image semantic segmentation and curb detection. To overcome these challenges, a camera-based method was proposed, leveraging both synthetic day images and real images for domain transfer. The algorithm comprised a dedicated generator network for translation and a segmentation network trained with a conventional loss function. The results of the experiment demonstrated a 124 % improvement in curb segmentation performance by F1 score, along with a 24 % increase in precision, compared to the benchmark. The findings underscored the method’s significant potential in augmenting nighttime curb segmentation. This approach would be poised to contribute substantially to the development of safer autonomous vehicles that are equipped with heightened perception capabilities.

목차

Abstract
1. Introduction
2. Background Knowledge
3. Proposed Method
4. Algorithm Evaluation
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090281506