메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Lunhui Zhang (Tongji University) Guangjun Liu (Tongji University) Changxin Wang (Tongji University) Bobo Helian (Karlsruhe Institute of Technology) Yunfei Wang (Shanghai Engineering Research Center for Safety Intelligent Control of Building Machinery)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
780 - 785 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The identification of granular materials is a crucial ability for automating construction machinery. Current point clouds segmentation methods struggle to segment shapeless objects, such as sand piles, due to sparse features. A real-time semantic sparse point cloud segmentation framework based on multi-view method is developed using a multi-sensor fusion SLAM algorithm with visual odometry. This approach has inherent semantic mapping errors caused by external calibration, dynamic pose estimation, and image segmentation. To enhance segmentation accuracy, a grid-space optimization algorithm has been proposed. The first step involves finding the incorrect segmented points by checking the pixel-depth gradient in grid space. Secondly, depth density clustering are applied to these points for re-segmentation. Our algorithm was tested on gravel and sand piles in construction scenarios. The experimental results demonstrated that our segmentation strategy can effectively segment granular objects. Furthermore, our two-step scanning and re-segmentation methods can significantly improve the performance of point cloud semantic segmentation.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTS
4. CONCLUSION AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0