메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정황훈 (Korea Construction Equipment Technology Institute) 신영일 (Korea Construction Equipment Technology Institute) 이진호 (Korea Construction Equipment Technology Institute) 조기용 (Korea Construction Equipment Technology Institute)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.20 No.4
발행연도
2023.12
수록면
133 - 139 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A weighing system calculates the bucket’s excavation amount of an excavator. Usually, the excavation amount is computed by the excavator’s motion equations with sensing data. But these motion equations have computing errors that are induced by assumptions to the linear systems and identification of the equation’s parameters. To reduce computing errors, some commercial weighing system incorporates particular motion into the excavation process.
This study introduces a linear regression model on an artificial neural network that has fewer predicted errors and doesn’t need a particular pose during an excavation. Time serial data were gathered from a 30tons excavator’s loading test. Then these data were preprocessed to be adjusted by MPL (Multi Layer Perceptron) or CNN (Convolutional Neural Network) based linear regression models. Each model was trained by changing hyperparameter such as layer or node numbers, drop-out rate, and kernel size. Finally ID-CNN-based linear regression model was selected.

목차

Abstract
1. 서론
2. 데이터 셋의 생성
3. 인공신경망의 학습
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088450368