메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김재훈 (울산과학기술원) Choi Young In (한양대학교) Sohn Jeong-woo (Department of Biomedical Engineering Ulsan National Institute of Science and Technology) 김성필 (울산과학기술원) 정성준 (한양대학교)
저널정보
한국뇌신경과학회 Experimental Neurobiology Experimental Neurobiology Vol.32 No.3
발행연도
2023.6
수록면
157 - 169 (13page)
DOI
10.5607/en23005

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0