메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한성현 (서경대학교) 이광엽 (서경대학교)
저널정보
인문사회과학기술융합학회 예술인문사회 융합 멀티미디어 논문지 예술인문사회 융합 멀티미디어 논문지 제7권 제11호
발행연도
2017.11
수록면
71 - 79 (9page)
DOI
http://dx.doi.org/10.14257/ajmahs.2017.11.59

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 이기종 컴퓨팅을 활용한 환율 예측 뉴럴 네트워크를 구현했다. 환율 예측에는 많은 양의 데이터가 필요하다. 그에 따라 이러한 데이터를 활용할 수 있는 뉴럴 네트워크를 사용했다. 뉴럴 네트워크는 크게 학습과 검증의 두 과정을 거친다. 학습은 CPU를 활용했다. 검증에는 Verilog HDL로 작성된 RTL을 FPGA에서 동작 시켰다. 해당 뉴럴 네트워크의 구조는 입력 뉴런 네 개, 히든 뉴런 네 개, 출력 뉴런 한 개를 가진다. 입력 뉴런에는 미국 1달러, 일본 100엔, EU 1유로, 영국 1파운드의 원화 가치를 사용했다. 입력 뉴런들을 통해 캐나다 1달러의 원화가치를 예측 했다. 환율을 예측 하는 순서는 입력, 정규화, 고정 소수점 변환, 뉴럴 네트워크 순방향, 부동 소수점 변환, 역정규화, 출력 과정을 거친다. 2016년 11월의 환율을 예측한 결과 0.9원에서 9.13원 사이의 오차 금액이 발생했다. 환율 이외의 다른 데이터를 추가해 뉴런의 개수를 늘린다면 더 정확한 환율 예측이 가능할 것으로 예상된다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0