메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김유림 (서울대학교)
저널정보
한국뇌신경과학회 Experimental Neurobiology Experimental Neurobiology Vol.29 No.6
발행연도
2020.1
수록면
425 - 432 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The primary somatosensory (S1) cortex plays a key role in distinguishing different sensory stimuli. Vibrotactile touch information is conveyed from the periphery to the S1 cortex through three major classes of mechanoreceptors: slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. It has been a long-standing question whether specific populations in the S1 cortex preserve the peripheral segregation by the afferent submodalities. Here, we investigated whether S1 neurons exhibit specific responses to two distinct vibrotactile stimuli, which excite different types of mechanoreceptors (e.g., SA1 and PC afferents). Using in vivo two-photon microscopy and genetically encoded calcium indicator, GCaMP6s, we recorded calcium activities of S1 L2/3 neurons. At the same time, static (<1 Hz) and dynamic (150 Hz) vibrotactile stimuli, which are known to excite SA1 and PC, respectively, were pseudorandomly applied to the right hind paw in lightly anesthetized mice. We found that most active S1 neurons responded to both static and dynamic stimuli, but more than half of them showed preferred responses to either type of stimulus. Only a small fraction of the active neurons exhibited specific responses to either static or dynamic stimuli. However, the S1 population activity patterns by the two stimuli were markedly distinguished. These results indicate that the vibrotactile inputs driven by excitation of distinct submodalities are converged on the single cells of the S1 cortex, but are well discriminated by population activity patterns composed of neurons that have a weighted preference for each type of stimulus.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0