메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyelee Chung (Korea University) Hosung Nam (Korea University)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제15권 제3호
발행연도
2023.9
수록면
69 - 74 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study introduces an innovative model for zero-shot voice conversion that utilizes the capabilities of HuBERT. Zero-shot voice conversion models can transform the speech of one speaker to mimic that of another, even when the model has not been exposed to the target speaker"s voice during the training phase. Comprising five main components (HuBERT, feature encoder, flow, speaker encoder, and vocoder), the model offers remarkable performance across a range of scenarios. Notably, it excels in the challenging unseen-to-unseen voice-conversion tasks. The effectiveness of the model was assessed based on the mean opinion scores and similarity scores, reflecting high voice quality and similarity to the target speakers. This model demonstrates considerable promise for a range of real-world applications demanding high-quality voice conversion. This study sets a precedent in the exploration of HuBERT-based models for voice conversion, and presents new directions for future research in this domain. Despite its complexities, the robust performance of this model underscores the viability of HuBERT in advancing voice conversion technology, making it a significant contributor to the field.

목차

Abstract
1. Introduction
2. Model
3. Training
4. Evaluation
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088054277