메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제31권 제6호
발행연도
2018.12
수록면
835 - 842 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
충분차원축소의 대표적 방법론 중 하나인 sliced average variance estimation (SAVE)은 슬라이스라고 불리우는 반응변수의 범주화의 총 수에 민감하다고 알려져 있다. 이러한 점을 극복하기 위한 방법으로 최근에 다양한 수의 슬라이스로부터 얻어진 SAVE의 정보를 결합하는 fused SAVE (FSAVE)가 개발되었다. 본 논문에서는 소위 large p-small n 자료라고 불리우는 자료의 수가 변수의 수보다 적은 자료에서 FASVE가 어떻게 실제적으로 사용될 수 있을지에 대해 실증적 분석을 하고자 한다. 이를 위해 근적외분광분석을 통해 얻어진 비스킷 자료를 이용할 것이고, 이러한 자료분석에서 FASVE에 의한 차원축소에 의해 분석된 결과가 기존의 방법론에 비해 우수함을 보고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001579278