메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yiehwa Lee (Chung-Ang University) Changwon Lim (Chung-Ang University)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제32권 제1호
발행연도
2021.1
수록면
243 - 256 (14page)
DOI
10.7465/jkdi.2021.32.1.243

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nonlinear regression models are commonly used in various fields such as toxicology/pharmacology. When analyzing data using a nonlinear regression model the structure of error variance plays a key role in the estimation of parameters. Particularly, when data do not satisfy the homoscedasticity assumption, it is important to use an appropriate estimation method. In this paper, a robust M-estimation method against potential outliers in nonlinear regression under heteroscedasticity is considered. Under the heteroscedasticity assumption, three variance models are considered, and a weighted M-estimator is studied by the simulation to compare the performance of the estimator with three variance models. From the results of the simulation studies, even though not as well as proper estimators, WME using a nonlinear variance model generally shows good performances for homoscedastic data and heteroscedastic data with the variance models. The methods are also illustrated by analyzing real toxicological data.

목차

Abstract
1. Introduction
2. Methodologies
3. Simulation studies
4. Application to real data
5. Concluding remarks
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-041-001472441