메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제29권 제7호
발행연도
2016.12
수록면
1,201 - 1,212 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
시장위험 관리를 위한 Value at Risk(VaR)는 금융기관들이 선호하는 기법이지만, 투자가 실패한 경우에 손실금액에 대하여는 설명할 수 없다는 문제점이 있다. VaR의 한계를 보완하는 대안적인 위험측정도구인 Conditional Tail Expectation(CTE)는 VaR를 초과하는 조건부 기대값으로 정의된다. 포트폴리오에 대한 CTE를 추정하는 실제금융시장에서는. 일반적으로는 다변량 손실률을 일변량 분포로 변환하여 VaR을 추정하고 CTE를 구하지만, 본 연구에서는 다차원 분위벡터를 이용하여 다변량 CTE들을 제안한다. 그리고 일변량 CTE들의 관계를 확장하여 다변량 CTE들의 관계식을 유도하였다. 다양한 분산-공분산행렬을 갖는 이변량과 삼변량의 정규분포로부터 다변량 CTE들을 구하고 CTE들의 관계식을 구현하면서 고차원 분포로의 확장 가능성을 설명하였다. 이변량과 삼변량의 실증 예제를 통해 제안한 이론을 탐색하고, 기존의 CTE와 비교하였다. 다변량 변수들의 분산-공분산행렬과 다변량 분위벡터를 사용한 다변량 CTE가 일변량으로 변환하여 구한 CTE보다 작은 값을 갖는 것을 발견하였다. 그러므로 본 연구에서 제안한 다변량 CTE는 보다 적은 위험성을 나타내는 추정량이며, 포트폴리오를 구성하는 여러 기업을 동시에 고려하는 분산 투자 전략을 세우는 경우에 이런 다변량 CTE를 사용하는 적극적인 투자가 가능하다는 장점이 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001588431