메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제28권 제2호
발행연도
2015.4
수록면
231 - 239 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
가산자료(counts data)를 적합 하는 경우 보통 포아송 모형이 가장 먼저 고려된다. 과산포 문제가 있을 경우도 유사포아송(quasi Poisson) 모형이나 음이항(Negative binomial) 모형으로 대부분 설명이 가능하다. 하지만, 가산자료 중에는 포아송분포를 가정한 기대 빈도 이상으로 많은 0이 관측되는 자료가 있고 이를 영과잉(Zero inflated) 가산 자료라고 부른다. 영과잉 가산자료를 설명하기 위해 영과잉 포아송(ZIP) 모형이나 영과잉 음이항(ZINB) 모형을 이용할 수 있다. 더 나아가 영과잉 가산자료가 공간상관관계까지 있을 경우 영과잉 문제뿐만 아니라 유의할 수 있는 공간효과까지 고려해야하고 이를 위해 혼합효과모형(mixed effects model)이 고려 될 수 있다. 본 연구에서 사용된 2004년 기준 부산시 남성동별 갑상선암 발생자수 자료를 이용하여, 일반선형 포아송모형, 영과잉 포아송모형, 공간 영과잉 포아송모형을 적합하여 비교해보았다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001587712