메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Haruhisa Kato (Tokyo Medical University) Makiko Naito (Tokyo Medical University) Tomoko Saito (Tokyo Medical University) Takuto Hideyama (Tokyo Medical University) Yasuhiro Suzuki (Asahikawa Medical Cente National Hospital Organization) Takashi Kimura (Asahikawa Medical Center) Shin Kwak (The University of Tokyo) Hitoshi Aizawa (Tokyo Medical University)
저널정보
대한신경과학회 Journal of Clinical Neurology Journal of Clinical Neurology 제18권 제4호
발행연도
2022.7
수록면
463 - 469 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron dis ease. Selective deficiency of edited adenosine deaminase acting on RNA 2 (ADAR2), a key mol ecule in the acquisition of Ca2+ resistance in motor neurons, has been reported in sporadic ALS (sALS) spinal motor neurons. Since ADAR2 activity is positively regulated by prolyl isomerase Protein never in mitosis gene A interacting-1 (Pin1), a known phosphorylation-dependent pep tidyl-prolyl cis/trans isomerase, we investigated Pin1 expression in spinal motor neurons in sALS. Methods Specimens of the spinal cord were obtained from the lumbar region in eight sALS patients and age-matched five controls after postmortem examinations. The specimens were double stained with anti-Pin1 and anti-TAR DNA-binding protein of 43 kDa (TDP-43) anti bodies, and examined under a fluorescence microscope. Results This study analyzed 254 and 422 spinal motor neurons from 8 sALS patients and 5 control subjects, respectively. The frequency of motor neurons with high cytoplasmic Pin1 ex pression from the spinal cord did not differ significantly between sALS specimens without cy toplasmic TDP-43 inclusions and control specimens. However, in sALS specimens, neurons for which the Pin1 immunoluminescence intensity in the cytoplasm was at least twice that in the background were more common in specimens with cytoplasmic TDP-43 inclusions (p<0.05 in χ2 test). Conclusions In sALS, neurons with higher expression levels of Pin1 levels had more TDP-43 inclusions. Despite the feedback mechanism between Pin1 and ADAR2 being unclear, since Pin1 positively regulates ADAR2, our results suggest that higher Pin1 expression levels in motor neu rons with TDP-43 pathology from sALS patients represent a compensatory mechanism

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0