메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hitesh Kumar Phulawariya (Mizoram University (A Central University)) Achinta Baidya (Mizoram University (A Central University)) Reshmi Maity (Mizoram University) Niladri Pratap Maity (Mizoram University (A Central University))
저널정보
한국전기전자재료학회 Transactions on Electrical and Electronic Materials Transactions on Electrical and Electronic Materials 제23권 제4호
발행연도
2022.8
수록면
430 - 440 (11page)
DOI
https://doi.org/10.1007/s42341-021-00365-6

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a silicon based two dimensional (2D) double gate junctionless transistor (JLT) is analyzed for its functional understanding and performance optimization feasibility. The DC characteristics and short channel effects (SCEs) analysis are performed for the proposed JLT structure. JLT with different structural parameter variation like gate length (10-80 nm), oxide thickness (1-5 nm), doping concentration (1 × 10 15 -1 × 10 19 cm -3 ), and raising source and drain thickness are investigated. The eff ect of these parameters and dielectric variation on the threshold voltage, drain current, transconductance, drain induced barrier lowering (DIBL) and subthreshold swing (SS) of the junctionless transistor also evaluated and analyzed. The analysis shows that the threshold voltage of JLT can be tuned by controlling device structural parameters. Further variation in gate oxide shows that JLT with hafnium oxide (HfO 2 ) gives better device characteristics compare to JLTs with silicon nitride (Si 3 N 4 ) and silicon-dioxide (SiO 2 ) . Use of high-k dielectric in gate oxide improves the JLT with respect to DIBL and SS. By choosing the proper channel doping, gate dielectric and their thickness combinations, the desired device characteristics could be obtained for junctionless transistor.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0