메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
M. Elangovan (Government College of Engineering) M. Elangovan (PSG College of Technology)
저널정보
한국전기전자재료학회 Transactions on Electrical and Electronic Materials Transactions on Electrical and Electronic Materials 제23권 제3호
발행연도
2022.6
수록면
272 - 287 (16page)
DOI
https://doi.org/10.1007/s42341-021-00346-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we have investigated the stability and power consumption of an 8 transistor (8 T) carbon nanotube fi eld-eff ect transistor (CNTFET) based static random-access memory (SRAM) cell. The power and noise performances of the proposed 8 T CNTFET SRAM cell are observed for write, hold and read operations. The power consumption and noise margin of the proposed 8 T CNTFET SRAM cell are compared with that of conventional 6 T and 8 T CNTFET SRAM cells. From the simulation results, it is noted that during the write, hold, and read operations, the proposed structure consumes less power than the conventional CNTFET SRAM cells. The proposed 8 T CNTFET SRAM cell provides greater write and hold modes stability than conventional CNTFET SRAM cells, which is measured by calculating static noise margin (SNM). The performance of CNTFET depends on several parameters like dielectric constant (Kox), oxide thickness (Hox), supply voltage, pitch value, and temperature. The eff ect of these parameters on the power and stability of the conventional and proposedCNTFET SRAM cells are observed. It is noted that the proposed 8 T CNTFET SRAM cell provides good stability during PVT variation and consumes less power than conventional 6 T and 8 T CNTFET SRAM cells. The performance metrics of the proposed 8 T CNTFET SRAM are observed for both pre-layout and post-layout simulations. All the simulations are performed using the Stanford University 32 nm CNTFET model with the HSPICE simulation tool.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0