메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이서원 (경희대학교) 김나윤 (경희대학교) 전다빈 (경희대학교) 한예림 (경희대학교) 신은정 (연세대학교)
저널정보
한국의류산업학회 한국의류산업학회지 한국의류산업학회지 제24권 제4호
발행연도
2022.8
수록면
418 - 430 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aims to analyze consumers’ purchase decision-making process of buying avatar fashion items onthe Metaverse platform. Drawing on the connection between the self-expression tendency of the MZ generation and thatof avatars in the Metaverse, this study uses a qualitative research method to analyze how consumers express their self- image through the appearance of their avatars. Unlike previous studies on the clothing purchase decision-making process, this study shows that purchasing and consumption behavior involve the following six stages: recognizing desire, collecting information, evaluating alternatives, making purchases, evaluating the consumption, and post-purchase action-taking. In the first stage of the purchase decision-making process, consumers’ desire arises with self-image expression and con- firmation. In the second stage, consumers have a high tendency to shop in the best item category. In the alternative evaluation stage, consumers tend to seek items that match their highest standard while considering their personal preferences. In the fourth stage, when making actual purchases, unplanned purchase behavior often occurs along with an active practice of alternative evaluation. In the fifth stage, the evaluation of the consumption shows that consumers achieve satisfaction by applying a style to their avatars that they are unable to try in the real world. In the last stage, con- sumers often use their purchases to communicate their various styles with other online consumers. Therefore, we con- clude that the online purchase decision-making process differs from the offline process as it is divided into six stages.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0