메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김성훈 (한양대학교)
저널정보
한국교육평가학회 교육평가연구 교육평가연구 제35권 제3호
발행연도
2022.9
수록면
521 - 553 (33page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
일차원 문항반응이론(IRT) 모형처럼, 다차원 IRT 이요인 모형(bifactor model)은 척도 미결정성의 문제를 지니고 있으며, 이 때문에 개별 추정으로부터 나온 이요인 모형 모수 추정치들을 공통 능력 척도에 놓기 위해서는 척도 연계 방법이 필요하다. 이요인 모형 기반 단일-문항유형 검사를 위해 네 가지 척도 연계 방법, 즉 직접 최소제곱(DLS) 방법, 평균/최소제곱(MLS) 방법, 문항유목반응함수(ICRF) 방법, 그리고 검사반응함수(TRF) 방법 등이 제시되어 왔다. Kim과 Lee(2006)의 접근 방식에 따라, 본 연구는 이 네 가지 척도 연계 방법을 이요인 모형 기반 혼합형 검사를 위해 사용할 수 있도록 확장한다. 확장된 각 척도 연계 방법은 이요인 3모수 로지스틱 모형, 이요인 등급반응 모형, 이요인 일반화부분점수 모형, 이요인 명명반응 모형의 어떠한 조합 아래에서도 사용될 수 있다. 일반성을 위해, ICRF 및 TRF 방법은 대칭적 척도 연계 방법으로 제시된다. 각 척도 연계 방법은 공통 문항들의 문항 모수 추정치들을 사용하여 선형 변환 함수의 팽창(기울기) 계수와 이동(절편) 계수를 추정한다. 혼합형 검사를 위한 네 가지 척도 연계 방법의 기능을 평가하기 위해 모의실험 연구를 수행하였다. 전반적으로, ICRF 방법이 척도 연계 계수를 가장 잘 추정하였고, MLS 및 DLS 방법은 그 다음으로 잘 추정하였으며(MLS 방법이 DLS 방법보다 약간 더 잘 추정함), TRF 방법은 가장 열등하게 추정하였다. TRF 방법의 열등성은 주로 이동 계수의 부정확한 추정 때문이었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0