메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김형훈 (숭실대학교) 정연선 (고려대학교) 최원석 (한성대학교) 조효진 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제32권 제4호
발행연도
2022.8
수록면
7 - 17 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
운전자 보조 시스템을 통한 차량의 전자적인 제어를 위하여, 최근 차량에 탑재된 전자 제어 장치 (ECU; Electronic Control Unit)의 개수가 급증하고 있다. ECU는 효율적인 통신을 위해서 차량용 내부 네트워크인 CAN(Controller Area Network)을 이용한다. 하지만 CAN은 기밀성, 무결성, 접근 제어, 인증과 같은 보안 메커니즘이 고려되지 않은 상태로 설계 되었기 때문에, 공격자가 네트워크에 쉽게 접근하여 메시지를 도청하거나 주입할 수 있다. 악의적인 메시지 주입은 차량 운전자 및 동승자의 안전에 심각한 피해를 안길 수 있기에, 최근에는 주입된 메시지를 식별하기 위한 침입 탐지 시스템(IDS; Intrusion Detection System)에 대한 연구가 발전해왔다. 특히 최근에는 AI(Artificial Intelligence) 기술을 이용한 IDS가 다수 제안되었다. 그러나 제안되는 기법들은 특정 공격 데이터셋에 한하여 평가되며, 각 기법에 대한 탐지 성능이 공정하게 평가되었는지를 확인하기 위한 평가 프레임워크가 부족한 상황이다. 따라서 본 논문에서는 machine learning/deep learning에 기반하여 제안된 차랑용 IDS 5가지를 선정하고, 기존에 공개된 데이터셋을 이용하여 제안된 기법들에 대한 비교 및 평가를 진행한다. 공격 데이터셋에는 CAN의 대표적인 4가지 공격 유형이 포함되어 있으며, 추가적으로 본 논문에서는 메시지 주기 유형을 활용한 공격 유형을 제안하고 해당 공격에 대한 탐지 성능을 평가한다.

목차

요약
Ⅰ. 서론
Ⅱ. 배경지식 및 관련 연구
Ⅲ. 평가 프레임워크
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0