메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신익수 (과학기술연합대학원대학교) 송중석 (과학기술연합대학원대학교) 최장원 (한국과학기술정보연구원) 권태웅 (한국과학기술정보연구원)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제28권 제2호
발행연도
2018.4
수록면
385 - 395 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷의 성장과 함께 각종 취약점을 악용한 사이버 공격들이 지속적으로 증가하고 있다. 이러한 행위를 탐지하기 위한 방안으로 침입탐지시스템(IDS; Intrusion Detection System)이 널리 사용되고 있지만, IDS에서 발생하는 많은 양의 오탐(정상통신을 공격행위로 잘못 탐지한 보안이벤트)은 여전히 해결되지 않은 문제로 남아있다. IDS 오탐 문제를 해결하기 위한 방법으로 기계학습 알고리즘을 통한 자동분류 연구가 진행되고 있지만 실제 현장 적용을 위해서는 정확도와 데이터 처리속도 향상을 위한 연구가 더 필요하다. 기계학습 기반 분류 모델은 다양한 요인에 의해서 그 성능이 결정된다. 최적의 feature를 선택하는 것은 모델의 분류 성능 및 정확성 향상에 크게 영향을 미치기 때문에 기계학습에서 매우 중요한 부분을 차지한다. 본 논문에서는 보안이벤트 분류 모델의 성능 향상을 위해 기존 연구에서 제안한 기본 feature에 추가로 10종의 신규 feature를 제안한다. 본 논문에서 제안하는 10종의 신규 feature는 실제 보안관제센터 전문 인력의 노하우를 기반으로 고안된 것으로, 모델의 분류 성능을 향상시킬 뿐만 아니라 단일 보안이벤트에서 직접 추출 가능하기 때문에 실시간 모델 구축도 가능하다. 본 논문에서는 실제 네트워크 환경에서 수집된 데이터를 기반으로 제안한 신규 feature들이 분류 모델 성능 향상에 미치는 영향을 검증하였으며, 그 결과, 신규 feature가 모델의 분류 정확도를 향상시키고 오탐지율을 낮춰주는 것을 확인할 수 있었다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 신규 feature 10종
IV. 실험 방법
V. 실험 결과
VI. 결론
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-002071375