메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권남혁 (대구경북과학기술원) 김유신 (대구경북과학기술원) 우은규 (대구경북과학기술원) 정다훈 (대구경북과학기술원) 채척 (대구경북과학기술원) 신동훈 (대구경북과학기술원)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제33권 제6호
발행연도
2023.12
수록면
5 - 14 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 산업제어시스템을 대상으로 하는 보안 사고가 지속적으로 증가함에 따라서 이상탐지 시스템에 대한 다양한 연구가 진행되고 있다. 특히 AI 기술의 급속한 발달과 함께 수준 높은 AI기반 이상탐지시스템이 연구되고 있다. 이러한 AI 모델은 산업제어시스템 환경에서 적용할 수 있도록 실시간의 처리가 필요하며, 데이터 세트의 학습에는 산업제어시스템 특성을 고려하는 것이 요구된다. 따라서, 데이터 세트가 산업제어시스템에서 적합하게 활용될 수 있는지 판별할 수 있는 세부 기준을 마련하게 된다면, 우수한 데이터 세트의 활용을 통해 산업제어시스템을 위한 AI 모델의 성능이 향상될 것으로 보인다. 본 논문에서는 산업제어시스템의 AI 침입 탐지시스템의 성능 향상을 위한 데이터 품질 연구의 동향을 조사하고, 향후 발전을 위한 방향성을 구체적인 평가항목을 통해 제시하고자 한다.

목차

요약
Ⅰ. 서론
Ⅱ. 국외동향
Ⅲ. 국내동향
Ⅳ. 평가항목
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089241792