메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배진경 (대구과학고등학교) 곽민수 (대구과학고등학교) 노경갑 (대구과학고등학교) 이동규 (경북대학교) 박대진 (경북대학교) 이승민 (경북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제1호
발행연도
2022.1
수록면
30 - 40 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
심전도 신호는 개인에 따라 형태와 특징이 다양하므로, 하나의 신경망으로는 분류하기가 어렵다. 주어진 데이터를 직접적으로 분류하는 것은 어려우나, 대응되는 정상 데이터가 있을 경우, 이를 비교하여 정상 및 비정상을 분류하는 것은 상대적으로 쉽고 정확하다. 본 논문에서는 템플릿 군을 이용하여 대표정상심박 정보를 획득하고, 이를 입력 심박에 결합함으로써 심박을 분류한다. 결합된 심박을 영상화한 후, 학습 및 분류를 진행하여, 하나의 신경망으로도 다양한 레코드의 비정상심박을 검출이 가능하였다. 특히, GoogLeNet, ResNet, DarkNet 등 다양한 신경망에 대해서도 비교학습 기법을 적용한 결과, 모두 우수한 검출성능을 가졌으며, GoogLeNet의 경우 99.72%의 민감도로, 실험에 사용된 신경망 중 가장 우수한 성능을 가졌음을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 알고리즘
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0