메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김성우 (동의대학교) 김인주 (동의대학교) 신승철 (솔미테크)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제1호
발행연도
2020.1
수록면
37 - 43 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 심전도 (ECG) 신호를 사용하여 심장병을 진단하는 많은 연구가 이루어지고 있다. 이러한 심전도 신호는 비정상적인 심장 상태를 나타내는 부정맥을 모니터링하고 진단하는 데 유용하게 쓰인다. 본 논문에서는 1차원 합성곱 신경망을 사용하여 ECG 신호에 대하여 부정맥을 분류하는 시스템을 제안한다. 제안하는 신경망 알고리즘은 부정맥신호의 특징을 세밀하게 추출하도록 4개의 합성곱 계층으로 구성하고 매개변수를 최적화하도록 설계되었다. MIT-BIH 부정맥 데이터베이스에 대해 학습한 신경망은 시뮬레이션을 통해 99% 이상의 정확도의 분류 성능을 가진다는 것을 보여준다. 비교적 합성곱 커널의 개수가 많을수록 ECG 신호의 특성을 더 잘 나타내기 때문에 좋은 성능을 나타내는 것으로 분석되었다. 또한 제안된 신경망을 활용한 실제 시스템을 구현하여 실시간으로 부정맥을 분류하는 결과를 검증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안 시스템
Ⅲ. 구현 결과
Ⅳ. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000371520