메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김동성 (이화여자대학교)
저널정보
대한언어학회 언어학 언어학 제29권 제2호
발행연도
2021.1
수록면
1 - 20 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Kim, Dongsung. (2021). Automatic scoring system for picture-based English caption writing test adopting deep learning based word-embedding. The Linguistic Association of Korea Journal, 29(2), 1-20. Since human grading of English writing requires substantial resources, many researchers in the area of Computer-Assisted Language Learning (CALL) have been focusing on automatic scoring systems based on natural language processing systems, machine learning, and other automatic processing mechanisms. English Testing Services (ETS) announced several automatic scoring systems for English writing. In this paper, we suggest using a deep learning based automatic scoring system for an English caption writing test. Our method involves using a sentence similarity measurement, which compares different levels of answer sentences with user writing input. We chose different word embedding types (Word2Vec, Word Mover‘s Distance (WMD), Bidirectional Encoder Representations from Transformers (BERT)) and Abstract Meaning Representation (AMR), a linguistic model for comparing semantic differences between two sentences based on semantic representation. Scoring systems should not only satisfy the requirements of complicated scoring rubrics but also meet the conditions of a language proficiency test. Our results show that BERT outperforms three competitive models in predicting accurate scoring levels and also shows the characteristics of the criterion reference which could theoretically express the standards of a language proficiency test.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0