메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sung-Gyu Kwak (Korea National University of Transportation) Go-Eun Lee (Korea National University of Transportation) Il-Ho Kim (Korea National University of Transportation)
저널정보
대한금속·재료학회 Electronic Materials Letters Electronic Materials Letters Vol.17 No.2
발행연도
2021.1
수록면
164 - 171 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Tetrahedrite Cu12Sb4S13is composed of abundant non-toxic components and has attracted attention as a promising thermoelectricmaterial with low thermal conductivity at intermediate temperatures. The carrier concentration can be optimizedby doping (substituting), thereby maximizing its power factor and reducing its thermal conductivity. In this study,Cu12Sb4S13−zSez (z = 0.1–0.4) compounds were synthesized using mechanical alloying and hot pressing. Our objective wasto maintain a high power factor through Se doping and to reduce the lattice thermal conductivity through additional phononscattering. X-ray diffraction analysis revealed that the lattice constant increased with an increase in Se substitution for theS sites, and all the specimens appeared as a single tetrahedrite phase. As the Se doping level increased, the carrier (hole)concentration decreased while the mobility increased. The Hall and Seebeck coefficients were both positive, indicating thatSe-doped tetrahedrites exhibit p-type conduction. As the Se substitution increased, the electrical conductivity decreased,but the Seebeck coefficient increased. In addition, Se doping lowered both, the electronic and lattice thermal conductivities,which resulted in decreased thermal conductivity. A maximum dimensionless figure of merit (ZT) of 0.87 was obtained at723 K for Cu12Sb4S12.8Se0.2with a high power factor of 0.96 mW m−1 K−2 and a low thermal conductivity of 0.77 W m−1 K−1.

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0