메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Fernando J. Castillo-Garcia (School of Industrial and Aerospace Engineering) Guillermo Rubio-Gómez (School of Industrial and Aerospace Engineering) Sergio Juárez (School of Industrial and Aerospace Engineering) David Rodríguez-Rosa (School of Industrial and Aerospace Engineering) Enrique Bravo (School of Industrial and Aerospace Engineering) Erika Ottaviano (University of Cassino and Southern Lazio) Antonio Gonzalez-Rodriguez (School of Industrial and Aerospace Engineering)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.2
발행연도
2021.1
수록면
387 - 396 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Cable-driven robots are parallel manipulators in which rigid links are replaced by actuated cables. The end-effector is then supported by a set of cables commanded by motors that are usually placed in a fixed frame. By varying the cables length, it is possible to change the end-effector position and/or orientation. Among the advantages presented by cable robots are they light-weight structure, high energy efficiency and their ability to cover large workspaces since cables are easy to wind. When high-speed operation is not required, a safer solution is to design cable-driven suspended robots, where all vertical components of cables tension are against gravity direction. Cable-driven suspended robots present limited workspace due to the elevated torque requirements for the higher part of the workspace. In this paper, the addition of a passive carriage in the top of the frame is proposed, allowing to achieve a much greater feasible workspace than the conventional one, i.e., with the same size as the desired inspection area while maintaining the same motor requirements. In the opposite, this new scheme presents non-desired vibration during the end-effector maneuvers. These vibrations can be removed by means of a more complex control strategy. Kinematics and dynamics models are developed in this paper. An analysis of sensor system is carried out and a control scheme is proposed for controlling the end-effector pose. Simulation and experimental results show that the feasible workspace can be notoriously increased while end-effector pose is controlled. This new architecture of cable-driven robot can be easily applied for automated inspection and monitoring of very large vertical surfaces of civil infrastructures, such as facades or dams.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0