메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
오선아 (광주대학교) 류정희 (광주대학교) 윤헌철 (전남대학교 교육문제연구소)
저널정보
한국교육공학회 Educational Technology International Educational Technology International Vol.21 No.2
발행연도
2020.1
수록면
193 - 216 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study investigated university students’ perspectives on good class and instructional practices through social network analysis. The subjects were 321 students in the third and fourth academic years in a Korean university. The subjects completed four open-ended questions, asking about experience of good class, good instructors’ teaching practice, and their feelings and attitudes when participating in good class. As social network analysis, KrKwic (Korea Key Words in Context) was used to compute word frequencies and analyze semantic network structures and Ucinet Netdraw to assess centrality in the social network, consisting of degree centrality, closeness centrality, and between centrality. The results are as follows. First, students showed 5 keywords to depict what good class is, including ‘understanding’, ‘example’, ‘video’, ‘interest’, and ‘communication’. Second, the characteristics of teaching methods by professors who practice good class indicate ‘assignments’, ‘questions’, ‘understanding’, ‘example’, and ‘feedback’. Third, the top 5 keywords of students’ attitudes as participating in good class are ‘active’, ‘participation’, ‘focus’, ‘listening’, and ‘asking’. Last, keywords depicting desirable class that students most wanted to take next time are ‘assignments’, ‘rewards’, ‘understanding’, ‘difficulty’, and ‘interest’. The findings from this study include the meanings of the semantic network structures of words in the text making up messages. Also this study can provide empirical evidence for educators and educational practitioners in higher education to create effective learning environments.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0