메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정동훈 (현대자동차) 전병욱 (현대자동차)
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제29권 제7호
발행연도
2021.7
수록면
629 - 637 (9page)
DOI
10.7467/KSAE.2021.29.7.629

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is very important to predict the required kinetic energy of the vehicle for driving in the near future in order to improve the driving efficiency of the powertrain. If powertrain control is performed in consideration of future driving situations, energy efficiency and drivability, as well as gear-shifting performance of the transmission, can significantly improve because precise power requirements for future vehicle behavior can be used at the right time. One of the most important factors in estimating future vehicle behavior is predicting vehicle speed. However, it is quite difficult to predict the future speed of a vehicle accurately due to certain factors, including the driver’s habits, geometric information of the road ahead, and traffic flow. Due to trends concerning recently released vehicles, including advanced driving assistance systems(ADAS), such as high-precision navigation with 3D map information and front radar and camera, it is now possible for a powertrain controller to utilize high-quality information that provides driving context to predict future vehicle behavior. In this study, we will be introducing a new, generative deep learning structure that continuously predicts future vehicle speed profiles in real time through a CNN-based, conditional VAE model that utilizes past driving data, current driver’s manipulation, and road traffic information. It is found that the prediction accuracy of the vehicle speed significantly improved with the new AI approach proposed in this paper.

목차

Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0